Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 233, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561647

RESUMO

BACKGROUND: The study focuses on the global challenge of drought stress, which significantly impedes wheat production, a cornerstone of global food security. Drought stress disrupts cellular and physiological processes in wheat, leading to substantial yield losses, especially in arid and semi-arid regions. The research investigates the use of Spirulina platensis aqueous extract (SPAE) as a biostimulant to enhance the drought resistance of two Egyptian wheat cultivars, Sakha 95 (drought-tolerant) and Shandawel 1 (drought-sensitive). Each cultivar's grains were divided into four treatments: Cont, DS, SPAE-Cont, and SPAE + DS. Cont and DS grains were presoaked in distilled water for 18 h while SPAE-Cont and SPAE + DS were presoaked in 10% SPAE, and then all treatments were cultivated for 96 days in a semi-field experiment. During the heading stage (45 days: 66 days), two drought treatments, DS and SPAE + DS, were not irrigated. In contrast, the Cont and SPAE-Cont treatments were irrigated during the entire experiment period. At the end of the heading stage, agronomy, pigment fractions, gas exchange, and carbohydrate content parameters of the flag leaf were assessed. Also, at the harvest stage, yield attributes and biochemical aspects of yielded grains (total carbohydrates and proteins) were evaluated. RESULTS: The study demonstrated that SPAE treatments significantly enhanced the growth vigor, photosynthetic rate, and yield components of both wheat cultivars under standard and drought conditions. Specifically, SPAE treatments increased photosynthetic rate by up to 53.4%, number of spikes by 76.5%, and economic yield by 190% for the control and 153% for the drought-stressed cultivars pre-soaked in SPAE. Leaf agronomy, pigment fractions, gas exchange parameters, and carbohydrate content were positively influenced by SPAE treatments, suggesting their effectiveness in mitigating drought adverse effects, and improving wheat crop performance. CONCLUSION: The application of S. platensis aqueous extract appears to ameliorate the adverse effects of drought stress on wheat, enhancing the growth vigor, metabolism, and productivity of the cultivars studied. This indicates the potential of SPAE as an eco-friendly biostimulant for improving crop resilience, nutrition, and yield under various environmental challenges, thus contributing to global food security.


Assuntos
Secas , População da Ásia Setentrional , Spirulina , Triticum , Triticum/metabolismo , Água/metabolismo , Carboidratos , Grão Comestível/metabolismo
2.
Microb Cell Fact ; 22(1): 136, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488525

RESUMO

BACKGROUND: Beet filter cake (BFC) is a by-product of sugar beet processing, which is difficult to dispose of and involves severe environmental concerns. Spirulina platensis is a microalga with a high protein content essential for human and animal nutrition. The present study aimed to utilize the beet filter cake extract (BFCE) to produce Spirulina platensis commercially. However, the cultivation of S. platensis on BFCE to produce economically single-cell protein has not been reported previously. RESULTS: The batch experiment revealed the maximum dry weight at Zarrouk's medium (0.4 g/L) followed by 0.34 g/L in the treatment of 75% BFCE. The highest protein content was 50% in Zarrouk's medium, followed by 46.5% in 25% BFCE. However, adding a higher concentration of 100% BFCE led to a protein content of 31.1%. In the adaption experiment, S platensis showed an increase in dry cell weight and protein content from 25 to 75% BFCE (0.69 g/L to 1.12 g/L and 47.0% to 52.54%, respectively) with an insignificant variation compared to Zarrouk's medium (p ≤ 0.05), indicating that S. platensis can be economically produced when cultivated on 75% BFCE The predicated parameters from response surface methodology were NaNO3 (2.5 g/L), NaHCO3 (0.67 g/L), BFCE (33%) and pH = 8, which resulted in biomass yield and protein content (0.56 g/L and 52.5%, respectively) closer to that achieved using the standard Zarrouk's medium (0.6 g/L and 55.11%). Moreover, the total essential amino acid content was slightly higher in the optimized medium (38.73%) than SZM (36.98%). CONCLUSIONS: Therefore, BFCE supplemented medium could be used as a novel low-cost alternative growth medium for producing a single-cell protein with acceptable quantity and quality compared to the standard Zarrouk's medium.


Assuntos
Beta vulgaris , Desenvolvimento Econômico , Animais , Humanos , Antioxidantes , Sacarose , Extratos Vegetais
3.
Artigo em Inglês | MEDLINE | ID: mdl-32766222

RESUMO

For efficient downstream processing, harvesting remains as one of the challenges in producing Nannochloropsis biomass, a microalga with high-value omega-3 oils. Flocculation is an effective, low-energy, low-cost method to harvest microalgae. Chitosan has been shown to be an effective food-grade flocculant; however, commercial chitosan is sourced from crustaceans, which has disadvantages including concerns over heavy-metal contamination. Thus, this study tests the flocculation potential of mushroom chitosan. Our results indicate a 13% yield of chitosan from mushroom. The identity of the prepared chitosan was confirmed by Fourier-transform infrared (FTIR) spectroscopy. Furthermore, results show that mushroom chitosan can be an alternative flocculant with >95% flocculation efficiency when tested in 100-mL jar and 200-L vertical column photobioreactor. Applications in a 2000-L raceway pond demonstrated that thorough mixing of mushroom chitosan with the algal culture is required to achieve efficient flocculation. With proper mixing, mushroom chitosan can be used to produce food-grade Nannochloropsis biomass suitable for the production of vegan omega-3 oils as a fish oil alternative.

4.
Bioresour Technol ; 316: 123916, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32768998

RESUMO

High-yielding microalgae present an important commodity to sustainably satisfy burgeoning food, feed and biofuel demands. Because algae-associated bacteria can significantly enhance or reduce yields, we isolated, identified and selected highly-effective "probiotic" bacterial strains associated with Nannochloropsis oceanica, a high-yielding microalga rich in eicosapentaenoic acid (EPA). Xenic algae growth was significantly enhanced by co-cultivation with ten isolated bacteria that improved culture density and biomass by 2.2- and 1.56-fold, respectively (1.39 × 108 cells mL-1; 0.82 g L-1). EPA contents increased up to 2.25-fold (to 39.68% of total fatty acids). Added probiotic bacteria possessed multiple growth-stimulating characteristics, including atmospheric nitrogen fixation, growth hormone production and phosphorous solubilization. Core N. oceanica-dominant bacterial microbiomes at different cultivation scales included Sphingobacteria, Flavobacteria (Bacteroidetes), and α, γ-Proteobacteria, and added probiotic bacteria could be maintained. We conclude that the supplementation with probiotic algae-associated bacteria can significantly enhance biomass and EPA production of N. oceanica.


Assuntos
Microalgas , Estramenópilas , Bactérias , Biomassa , Ácido Eicosapentaenoico
5.
Saudi Pharm J ; 28(12): 1834-1841, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33424272

RESUMO

In recent decades, marine microorganisms have become known for their ability to produce a wide variety of secondary bioactive metabolites. Several compounds have been isolated from marine microorganisms for the development of novel bioactives for the food and pharmaceutical industries. In this study, a number of microalgae were evaluated for their antimicrobial activity against gram-positive and gram-negative bacteria, including food and plant pathogens, using various extraction techniques and antimicrobial assays. Disc diffusion and spot-on-lawn assays were conducted to confirm the antimicrobial activity. To measure the potency of the extracts, minimum inhibition concentrations (MIultCs) were measured. Three microalgae, namely Isochrysis galbana, Scenedesmus sp. NT8c, and Chlorella sp. FN1, showed strong inhibitory activity preferentially against gram-positive bacteria. These microalgal species were then selected for further purification and analysis, leading to compound identification. By using a mixture of different chromatography techniques gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) and ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS), we were able to separate and identify the dominant compounds that are responsible for the inhibitory activity. Additionally, nuclear magnetic resonance (NMR) was used to confirm the presence of these compounds. The dominant compounds that were identified and purified in the extracts are linoleic acid, oleic acid, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). These compounds are the potential candidates that inhibit the growth of gram-positive bacteria. This indicates the potential use of microalgae and their antimicrobial compounds as biocontrol agents against food and plant pathogens.

6.
Glob Chall ; 3(1): 1800038, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31565353

RESUMO

Food-grade rather than synthetic or chemical flocculants are needed for microalgae harvesting by settling, if used for food products. Chitosan is effective in harvesting freshwater microalgae, but it is expensive and typically not suitable for marine microalgae like Nannochloropsis. To minimize costs for food-grade flocculation, a number of potentially important parameters are considered, including chitosan solubility and optimized chitosan-mediated flocculation of Nannochloropsis sp. BR2 by a five-factor central composite design experiment. Results show that an optical density (440 nm) of 2 (0.23 g dry weight L-1), initial pH of 6, final pH of 10, and 22 ppm chitosan with a viscosity of 1808 cP provide optimum flocculation efficiency, which is predicted to be in the range of 97.01% to 99.93%. These predictions are verified on 4.5 and 8 L Nannochloropsis sp. BR2 cultures.

7.
Sci Total Environ ; 692: 267-280, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31349168

RESUMO

Biotic interactions through diffusible and volatile organic compounds (VOCs) are frequent in nature. Soil bacteria are well-known producers of a wide range of volatile compounds (both organic and inorganic) with various biologically relevant activities. Since the last decade, they have been identified as natural biocontrol agents. Volatiles are airborne chemicals, which when released by bacteria, can trigger plant responses such as defence and growth promotion. In this study, we tested whether diffusible and volatile organic compounds (VOCs) produced by soil bacterial isolates exert anti-oomycete and plant growth-promoting effects. We also investigated the effects of inoculation with VOC-producing bacteria on the growth and development of Capsicum annuum and Arabidopsis thaliana seedlings. Our results demonstrate that organic VOCs emitted by bacterial antagonists negatively influence mycelial growth of the soil-borne phytopathogenic oomycete Phytophthora capsici by 35% in vitro. The bacteria showed plant growth promoting effects by stimulating biomass production, primary root growth and root hair development. Additionally, we provide evidence to suggest that these activities were deployed by the emission of either diffusible organic compounds or VOCs. Bacterial VOC profiles were obtained through solid phase microextraction (SPME) and analysis by gas chromatography coupled with mass spectrometry (GC-MS). This elucidated the main volatiles emitted by the isolates, which covered a wide range of aldehydes, alcohols, esters, carboxylic acids, and ketones. Collectively, twenty-five VOCs were identified to be produced by three bacteria; some being species-specific. Our data show that bacterial volatiles inhibits P. capsici in vitro and modulate both plant growth promotion and root system development. These results confirm the significance of soil bacteria and highlights that ways of harnessing them to improve plant growth, and as a biocontrol agent for soil-borne oomycetes through their volatile emissions deserve further investigation.


Assuntos
Arabidopsis/efeitos dos fármacos , Bactérias/química , Capsicum/efeitos dos fármacos , Phytophthora/efeitos dos fármacos , Microbiologia do Solo , Compostos Orgânicos Voláteis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Capsicum/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Phytophthora/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
8.
Bioresour Technol ; 263: 625-630, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29800924

RESUMO

Anaerobic digestion is an established technology to produce renewable energy as methane-rich biogas for which microalgae are a suitable substrate. Besides biogas production, anaerobic digestion of microalgae generates an effluent rich in nutrients, so-called digestate, that can be used as a growth medium for microalgal cultures, with the potential for a closed nutrient loop and sustainable bioenergy facility. In this study, the methane potential and nutrient mobilization of the microalga Scenedemus dimorphus was evaluated under continuous conditions. The suitability of using the digestate as culture medium was also evaluated. The results show that S. dimorphus is a suitable substrate for anaerobic digestion with an average methane yield of 199 mL g-1 VS. The low level of phosphorus in digestate did not limit algae growth when used as culture medium. The potential of liquid digestate as a superior culture medium rather than inorganic medium was demonstrated.


Assuntos
Biocombustíveis , Microalgas , Anaerobiose , Metano , Fósforo
9.
Bioresour Technol ; 252: 118-126, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29306714

RESUMO

The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 µmol m-2 s-1) LEDs on day 7 and low light intensity (50 µmol m-2 s-1) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently.


Assuntos
Biomassa , Microalgas , Carotenoides , Ácidos Graxos , Estramenópilas
10.
Bioresour Technol ; 250: 591-602, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29216572

RESUMO

Haematococcus pluvialis is a green microalga of major interest to industry based on its ability to produce large amounts of astaxanthin. Biosynthesis of astaxanthin and its mono- and di-esters was significantly stimulated under 150 µmol m-2 s-1 of white LED (W-150) compared with lower light intensities, but the highest astaxanthin amounts were produced under 70 µmol m-2 s-1 of blue LED (B-70). Transcripts of astaxanthin biosynthesis genes psy, crtO, and bkt2 were upregulated under W-150, while psy, lcy, crtO, and crtR-B were upregulated by B-70. Total fatty acid content and biosynthesis genes fata and all dgat genes were induced under W-150, while C18:3n6 biosynthesis and dgat2a expression were specifically stimulated by B-70 which was correlated to astaxanthin ester biosynthesis. Nitrogen starvation, various LEDs and the identified upregulated genes may provide useful tools for future metabolic engineering to significantly increase free astaxanthin, its esters and fatty acid precursors in H. pluvialis.


Assuntos
Clorófitas , Perfilação da Expressão Gênica , Ácidos Graxos , Iluminação , Xantofilas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA